PROM DRESS GAME:
TEACHING STUDENTS KEY ASPECTS OF DESIGN-FOR-SUPPLY CHAIN
INSTRUCTOR GUIDELINES
ABOUT THE AUTHORS

Prof. Dr. Kai Hoberg

• Professor of Supply Chain and Operations Strategy at Kühne Logistics University since 2012
• Ass. Prof. at University of Cologne, visiting scholar at National University of Singapore, Cornell University and Israel Institute of Technology,
• Project manager and strategy consultant at Booz & Company in the Operations Practice
• Dr. rer. pol. at Münster University in supply chain management
• Faculty in the Supply Chain Academy of leading global consultancy

Dipl.-Kfm. Christoph Flöthmann

• Ph.D. student at the Kühne Logistics University since 2012
• Diploma degree in Business Administration from University of Cologne with majors in Supply Chain Management, Transport Economics and Finance
• Internships with OSCAR GmbH, Bayer MaterialScience AG and DB Schenker AG in Germany and Indonesia

Please feel free to contact us directly for any questions or improvement comments
AGENDA

- Introduction
- Instructor Preparation
- Student Preparation Hand-Out
- In-Game Hand-Out
- Other Material
LEARNING OBJECTIVES AND APPROACH

Objectives
1. Introduce the concept of “Postponement” as an example for Design–for–Supply Chain best–practices to students
2. Motivate your students to identify solutions for SCM challenges

Approach
1. Game features a fashion supply chain producing dresses
2. Teams of three students perform different manufacturing tasks in four selling seasons
3. After three seasons students discuss supply chain redesign

Benefits
1. Game enables students to easily grasp the principle of postponement with help of this simple hands–on simulation
2. Game demonstrates that SCM theory is relevant in practice
GAME HIGHLIGHTS AND STUDENT FEEDBACK

“I think I am able to explain the principle of postponement even to my parents thanks to this game session”

“I don’t think I will ever forget how postponement in a supply chain works.”

“I understood the challenges if demand forecasts do not match the real demand”

“We gained knowledge while having a lot of fun!”
AGENDA

- Introduction
- Instructor Preparation
 - Student Preparation Hand-Out
 - In-Game Hand-Out
- Other Material
STUDENTS WILL MANAGE A FASHION SUPPLY CHAIN FOR DRESSES

Initial Supply Chain Setup (Seasons 1–3)

- The prom dress game simulates a fashion manufacturer with two products: a blue dress and a red dress. Students will be responsible for managing the supply chain.
- Textiles are purchased from an overseas supplier: Textiles are ordered in blue and red color with pre-cut shapes. Unsold dresses are stored in our warehouse.
- After arrival at the factory, materials are forwarded to the cutting and sewing stations where the production is performed. Finally, dresses will be sold to customers in retail stores. The general supply chain setup is as above.
SUPPLY CHAIN SETUP WILL CHANGE WITH POSTPONEMENT

Aligned Supply Chain Setup (Season 4)

- After the introduction of postponement, textiles will be purchased in white and colored later in the last production stage.
- Cutting should still be performed by two persons while the third student is responsible for sewing.
- Coloring should be performed by two participants after announcement of the actual demand.

Note: (1) “Coloring” the white textile needs to be done with 4 felt-tip lines per side only.
STUDENTS WILL PLAY FOUR SEASONS Á 5 MINUTES

Game Setup & Rationale

<table>
<thead>
<tr>
<th>Season</th>
<th>Demand Forecast</th>
<th>Demand observed</th>
<th>Rationale for Season</th>
<th>Expected Results</th>
</tr>
</thead>
</table>
| 1 | 5x blue / 5x red| 5x / 5x | Understanding of the game | 100% demand satisfaction
| | | | | No surplus inventory |
| 2 | 5x / 5x | 0x / 10x | Demonstration of real-world challenges & build-up of frustration | Worst result of all seasons
| | | | | Only 50–60% demand satisfaction
| | | | | High surplus inventory |
| 3 | 5x / 5x | 10x / 0x | Climax of frustration & dissatisfaction of performance | 70–90% demand satisfaction
| | | | | Higher surplus inventory |
| 4 | 6x / 4x | 3x / 7x | Problem of the SC is solved and the teams are finally rewarded for their work | 100% demand satisfaction
| | | | | No surplus inventory |
| | **SC Design Discussion** | | Motivate students to think about solutions and develop a strategy for performance optimization | Discussion and formulation of the main problem |
| | **Debriefing** | | Reflection of learning objectives to ensure memorization, Demonstration of real-world best-practices | Full understanding of the postponement principle |

STUDENTS WILL PLAY FOUR SEASONS Á 5 MINUTES
OVERALL SEQUENCE OF EVENTS

Season 1:
- Announce or project demand forecast (min 1)
- Production (min 2 - min 4)
- Handout or project actual demand (min 4)
- Fill demand and record cost (min 5)
- SC Design Discussion
 - Discussion of supply chain re-design & handout new materials

Season 2:
- Production
- Processing and reflection

Season 3:
- Production
- Processing and reflection

Season 4:
- Production
- Processing and reflection

Debriefing:
- Discussion of learnings

Legend:
- Production
- Processing and reflection
THE TEAMS’ OBJECTIVE IS TO MAXIMIZE THE COMPANY’S GROSS PROFIT

Calculation Logic & Performance Tracking

<table>
<thead>
<tr>
<th>Price / Cost</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Margin</td>
<td>4 Euro</td>
</tr>
<tr>
<td>Sales Margin</td>
<td>Teams earn 4 Euro per dress sold (sales price of 6 Euro – production cost of 2 Euro).</td>
</tr>
<tr>
<td>Sales Margin</td>
<td>Multiply 4 Euro with the number of finished dresses which met the demand to get the Gross Sales</td>
</tr>
<tr>
<td>Finished Good Inventory</td>
<td>2 Euro</td>
</tr>
<tr>
<td>Finished Good Inventory</td>
<td>Finished dresses which could not be sold (demand for that color is already fulfilled) cost the company 2 Euro each.</td>
</tr>
<tr>
<td>Finished Good Inventory</td>
<td>NOTE: FG Inventory cannot be carried to the next season, teams always start with zero inventory.</td>
</tr>
<tr>
<td>WIP Inventory</td>
<td>1 Euro</td>
</tr>
<tr>
<td>WIP Inventory</td>
<td>Dresses which could not be finished, i.e. are still in the cutting or sewing stage, cost the company 1 Euro each.</td>
</tr>
<tr>
<td>WIP Inventory</td>
<td>NOTE: WIP inventory is also not useable in the following round.</td>
</tr>
<tr>
<td>Gross Profit</td>
<td></td>
</tr>
<tr>
<td>Gross Profit</td>
<td>Gross Sales – Total Inventory Cost = Gross Profit</td>
</tr>
<tr>
<td>Gross Profit</td>
<td>NOTE: Raw material on consignment – Raw material cost ignored for simplicity reasons</td>
</tr>
</tbody>
</table>

Excel Calculator Sample:

Teams have to hand in their tracking sheets after each round.
Numbers should be typed in the Excel calculator to track the teams’ performance.
GOOD PRACTICES FOR RUNNING THE GAME

- **DO NOT** tell students that they are learning about postponement before the game, rather use the term “Prom Dress Game”.

- **DO NOT** present the felt-tips and white dress patterns until round 4! Students should not have a clue about this option at first!

- Select an appropriate room with sufficient space for “manufacturing operations”.

- Create teams of three students (if many students in class, a fourth can perform quality inspections and a fifth can observe approach).

- **DO NOT** allow use of personal scissors or staplers.

- **DO NOT** allow stacking of pre-cuts and cutting them at once.

- Project the forecast and actual demand information using a beamer or to avoid that student miss the information and mess-up the paper.

- Be strict about the time.

- ...
SAMPLE QUESTIONS FOR SC DESIGN DISCUSSION

“What is the reason for your poor SC performance?”

“How would you be able to speed up production?”

“Who should be criticized for the performance issues?”

“What do you need to change in your supply chain?”

“At which stage of product development should the supply chain management be involved?”

“Can you imagine what “Postponement” could mean?”
SAMPLE QUESTIONS FOR DEBRIEFING

“Which industries should consider the Design-for-Supply Chain approach?”

“How did you learn today?”

“How about increased cost from the coloring step?”

“How would you balance cheaper production with more expensive postponement?”

“Could you explain the key characteristics of Postponement to others after this session?”

“Do you know which companies have been using Postponement to improve the overall SC performance?”

“Which industries should consider the Design-for-Supply Chain approach?”
WHAT TO PREPARE AND TO BRING …

Necessary Equipment PER TEAM

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scissors</td>
<td>2x</td>
</tr>
<tr>
<td>Stapler</td>
<td>1x</td>
</tr>
<tr>
<td>Blue Marker</td>
<td>1x</td>
</tr>
<tr>
<td>Red Marker</td>
<td>1x</td>
</tr>
<tr>
<td>Instructions</td>
<td>1x</td>
</tr>
<tr>
<td>Dresses - Red</td>
<td>24x*</td>
</tr>
<tr>
<td>Dresses - Blue</td>
<td>24x*</td>
</tr>
<tr>
<td>Dresses - Blank</td>
<td>12x**</td>
</tr>
</tbody>
</table>

- “Coloring” the white dresses needs to be done with 4 felt-tip lines per side only to ensure that all teams are able to finish 10 correct dresses in the last minute.

YOU NEED RED & BLUE DIN A4 SHEETS

Please find print copy under section „Other Material“

* print 4 pages

** print 2 pages
PROPOSED BACKGROUND FOR STUDENTS READINGS

<table>
<thead>
<tr>
<th>#</th>
<th>Task</th>
<th>Estimated Timeline</th>
<th>Duration of Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(Print of hand-outs & dress patterns)</td>
<td>(10 min)</td>
<td>(10 min)</td>
</tr>
<tr>
<td>1</td>
<td>Preparation and setup of “supply chain”</td>
<td>0 – 5 min</td>
<td>5 min</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to students, explanation of rules, setup, tasks & equipment, answering questions</td>
<td>5 – 20 min</td>
<td>15 min</td>
</tr>
<tr>
<td>3</td>
<td>Season 1</td>
<td>20 – 25 min</td>
<td>5 min</td>
</tr>
<tr>
<td>4</td>
<td>Filling tracking sheets and reset of setup</td>
<td>25 – 27 min</td>
<td>2 min</td>
</tr>
<tr>
<td>5</td>
<td>Season 2</td>
<td>27 – 32 min</td>
<td>5 min</td>
</tr>
<tr>
<td>6</td>
<td>Filling tracking sheets and reset of setup</td>
<td>32 – 34 min</td>
<td>2 min</td>
</tr>
<tr>
<td>7</td>
<td>Season 3</td>
<td>34 – 39 min</td>
<td>5 min</td>
</tr>
<tr>
<td>8</td>
<td>Filling tracking sheets and reset of setup</td>
<td>39 – 41 min</td>
<td>2 min</td>
</tr>
<tr>
<td>9</td>
<td>SC design discussion & handout new material</td>
<td>41 – 51 min</td>
<td>10 min</td>
</tr>
<tr>
<td>10</td>
<td>Season 4</td>
<td>51 – 56 min</td>
<td>5 min</td>
</tr>
<tr>
<td>11</td>
<td>Filling tracking sheets and clean up</td>
<td>56 – 60 min</td>
<td>4 min</td>
</tr>
<tr>
<td>12</td>
<td>Debriefing</td>
<td>60 – 75 min</td>
<td>15 min</td>
</tr>
<tr>
<td>13</td>
<td>Optional Session on Design-for-Supply Chain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AGENDA

- Introduction
- Instructor Preparation
- Student Preparation Hand-Out
- In-Game Hand-Out
- Other Material
YOU WILL MANAGE A FASHION SUPPLY CHAIN FOR DRESSES

Supply Chain Setup

- The prom dress game simulates a fashion manufacturer with two products: a blue dress and a red dress. You will be responsible for managing the supply chain.
- Textiles are purchased from an overseas supplier: Textiles are ordered in blue and red color with pre-cut shapes. Unsold dresses are stored in our warehouse.
- After arrival at your factory, materials are forwarded to the cutting and sewing stations where the production is performed. Dresses will be sold to customers in our retail stores. The general supply chain setup is as shown above.

© Prof. Dr. Kai Hoberg, Dipl.-Kfm. Christoph Flöthmann
GAME RULES & OBJECTIVE

General Setup
- The game is played for 4 seasons.
- A season is played in 5 real-time minutes.
- Each season is divided into two parts.

Minutes 1 to 4: Pre-production
- You produce dresses for the selling season: You produce in your own local factory by cutting the dresses and sew them.
- You have sufficient raw materials from your supplier in consignment stock (at no cost).
- You should base production on the demand forecast – but remember: forecasts are typically wrong!

Minute 5: Selling season
- You find out the real customer demand now.
- Your company has one last minute to adjust the collection before the dresses are sold to your customers at the end of the season.

The objective of the game is to maximize the company’s gross profit
SETUP, EQUIPMENT AND FIGURES

Set-up & Equipment
- Game is played in a team of 3 people sitting next to each other at a table.
- Blue & red paper simulates the clothes with pre-cuts of the dresses.
- There are 2 scissors (cutting stage) & 1 stapler (sewing stage).
- You can choose your process setup.

Manufacturing Instructions
1. Cutting: Cut out the front- and/or back-side of the dress
2. Sewing: Staple front and back together using 4 staples(top, bottom, right, left)
3. Dress is finished and ready for sale in your retail store.

Revenue/cost per dress
- Sales Margin: 4 Euro (sales price of 6 Euro – unit cost of 2 Euro)
- FG inventory cost: 2 Euro (for finished dresses which cannot be sold)
- WIP inventory cost: 1 Euro (for cloth you started to cut but didn’t sew)
- Raw material cost: 0 Euro (on consignment from supplier)
TRACKING SHEET – FILL OUT CAREFULLY AFTER EACH SEASON

TEAM:

<table>
<thead>
<tr>
<th>Season</th>
<th># of WIP Inventory</th>
<th># of Finished Good Inventory</th>
<th># of Units Sold</th>
<th>WIP Inventory Cost</th>
<th>Finished Good Inventory Cost</th>
<th>Sales Margin</th>
<th>Gross Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2*1 = 2</td>
<td>3*2 = 6</td>
<td>5*4 = 20</td>
<td>20 – 6 – 2 = 12</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figures (per dress)
- Sales Margin: 4 Euro (sales price of 6 Euro – unit cost of 2 Euro)
- Dress inventory cost: 2 Euro (for finished dress which cannot be sold in season)
- WIP inventory cost: 1 Euro (for cloth you started to cut out or sew but was not finished in season)
AGENDA

- Introduction
- Instructor Preparation
- Student Preparation Hand-Out
- In-Game Hand-Out
- Other Material
Marketing has forecasted customer demand for this season’s dress collection.

<table>
<thead>
<tr>
<th>Style</th>
<th>Forecasted Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>5 x</td>
</tr>
<tr>
<td>Blue</td>
<td>5 x</td>
</tr>
</tbody>
</table>
ACTUAL CUSTOMER DEMAND – SEASON 1

Marketing was right about the observed demand – very impressive forecasting performance.

URGENT: Selling season has started - here is the actual demand

Dear Production Team,

we just received the orders for our new "Red&Blue" Prom Dress Collection:

The demand is as expected - the forecast of our marketing department was excellent.

Kind regards,

The Sales Team
Marketing has forecasted customer demand for this season’s dress collection.

<table>
<thead>
<tr>
<th>Style</th>
<th>Forecasted Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>5 x</td>
</tr>
<tr>
<td>Blue</td>
<td>5 x</td>
</tr>
</tbody>
</table>
Article from the latest edition of “Vogue Magazine”: “The academy award ceremony took place yesterday in Hollywood. Many actresses wore beautiful red dresses. Red really seems to be the color for this year’s season. Any woman who calls herself a modern fashionista should buy one of these dresses this year”
Marketing has forecasted customer demand for this season’s dress collection.

<table>
<thead>
<tr>
<th>Style</th>
<th>Forecasted Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>5 x</td>
</tr>
<tr>
<td>Blue</td>
<td>5 x</td>
</tr>
</tbody>
</table>
ACTUAL CUSTOMER DEMAND – SEASON 3

Article from “Berliner Zeitung”
One month ago the Blue Men Group Show premiered in Berlin and had unbelievable success since that. Everyone in the capital is talking about their amazing show and “Berlin loves Blue” is the new slogan for this season.

<table>
<thead>
<tr>
<th>Style</th>
<th>Observed Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>1 x</td>
</tr>
<tr>
<td>Blue</td>
<td>9 x</td>
</tr>
</tbody>
</table>
LET'S DO SOME BRAINSTORMING HOW TO OPTIMIZE THE SUPPLY CHAIN

<table>
<thead>
<tr>
<th>Key Problems</th>
<th>Improvement Levels</th>
</tr>
</thead>
</table>

HAND–OUT AFTER SEASON 3
BASF launches innovative „Sewed-Textile-Coloring-System“

Ludwigshafen, Germany – German chemicals giant BASF launched its newest product yesterday, long-anticipated by fashion manufactures. With help of its “Sewed-Textile-Coloring-System” (STCS) it is finally possible to simplify all coloring processes in textile manufacturing.

Prior to this breakthrough innovation, manufactures had to pre-select the yarn matching the textile. Now companies can color the yarn as required. It might be even possible to color materials and yarn after clothes have been sewed.

April 1st, 2012

What does this mean for our supply chain?
The question is: What has been the actual problem in the changes of demand? What was the uncertainty we had to handle? The answer is that the only problem was the color of the dresses!

We can solve this problem with the help of “postponement”. We can enable the company to react to unpredicted orders by implementing the coloring stage as a last station in our SC before delivery to the retail stores. This means that we order WHITE cloth from our supplier and color it later on our own when the actual demand is known (in the last minute of the season):

Note: (1) “Coloring” the white textile needs to be done with 4 felt-tip lines per side only
Marketing has forecasted customer demand for this season’s dress collection.

Forecasted Demand

<table>
<thead>
<tr>
<th>Style</th>
<th>4x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>6x</td>
</tr>
</tbody>
</table>
Marketing was close this time but forecasts are always wrongs.

From the marketing email:

```
Dear Production Team,

we just received the orders for our new "Red&Blue" Prom Dress Collection:

The demand is different from our expectations:

Customers ordered 7 red and 3 blue dresses!

Kind regards,

The Sales Team
```
DESIGN-FOR-SUPPLY-CHAIN IMPLEMENTATIONS IN PRACTICE 1/2

Postponement at Benetton

Dyed Yarns → Knitting → Finished Sweaters

Dyeing

White Garments → Dyeing → Finished Sweaters

Knitting

Source: Cachon & Terwiesch (2009)
HP’s “Six-Pack” View of DfSC

The following graphic illustrates HP’s view of what DfSC “is.” HP has used these techniques successfully for more than a decade.

Variety Management
Weigh costs of variety against sales impacts to determine customer offering

Logistics Enhancement
Redesign product and packaging to improve density factor and size as well as optimizing # per pallet/load

Commonality and Reuse
Make components, modules, and interfaces common across more products, now and in future

Postponement
Modify product to allow process sequencing changes and postponed differentiation

Tax and Duty Reduction
Change build location and transfer prices to reduce tax and duty burden

Environment & Take-Back
Product and packaging changes to reduce reverse supply chain costs

AGENDA

- Introduction
- Instructor Preparation
- Student Preparation Hand-Out
- In-Game Hand-Out
- Other Material
DEBRIEFING FILE

Microsoft Office Excel-Arbeitsblatt

![Microsoft Office Excel-Arbeitsblatt](image)

The chart shows the performance calculator for a dress game. The table outlines the performance metrics for different teams and seasons, including the number of units sold, finished good inventory, WIP inventory, cost, sales margin, gross profit, and average profit.

Profit by Team & Season

The graph illustrates the profit trend for each team across different seasons. The teams are represented by different lines.

- **Team 1**: High initial profits, followed by a decline.
- **Team 2**: Steady profit throughout.
- **Team 3**: Moderate profit with some fluctuations.
- **Team 4**: Significant profit growth followed by a drop.
- **Team 5**: Consistent profit with slight variations.

Key Metrics
- **Sales Selling Margin**: 4 Euro
- **FG Inventory Cost**: 2 Euro
- **WIP Inventory Cost**: 1 Euro

Team Performance:

<table>
<thead>
<tr>
<th>Team</th>
<th>Season</th>
<th># of WIP Inventory</th>
<th># of Finished Good Inventory</th>
<th># of Units Sold</th>
<th>WIP Inventory Cost</th>
<th>Finished Good Inventory Cost</th>
<th>Sales Margin</th>
<th>Gross Profit</th>
<th>Avg. Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team 1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>50.25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td>Team 2</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td>Team 3</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td>Team 4</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td>Team 5</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>40</td>
<td>28.25</td>
</tr>
</tbody>
</table>
FILE WITH DRESS PATTERN

YOU NEED RED & BLUE DIN A4 SHEETS
Use the PDF document attached and Print 4 copies in blue and red per team
Print 2 copies in white per team