Prof. Dr.
Kai Hoberg

Professor of Supply Chain and Operations Strategy and Head of Logistics Department

Kai Hoberg is Head of Logistics Department and Professor of Supply Chain and Operations Strategy at Kühne Logistics University since November 2017. He joined the KLU as an Associate Professor in May 2012. From 2010 to 2012 he was Assistant Professor of Supply Chain Management at the University of Cologne. Kai Hoberg received his PhD in 2006 from Münster University, Germany under supervision of Prof. Dr. Ulrich W. Thonemann.

In his academic career he was a visiting scholar at different top universities such as S.C. Johnson Graduate School of Management at Cornell University, Israel Institute of Technology, NUS Business School at National University of Singapore, Saïd Business School at the University of Oxford and the University of Stellenbosch. Kai Hoberg earned a Diplom Degree in Industrial Engineering at Paderborn University, Germany and Monash University, Melbourne.

Kai Hoberg’s current research topics include supply chain analytics, role of technology in supply chains, inventory modeling, and the link between operations and finance.  In particular, he explores the fundamental drivers of supply chain performance and strategies applying real-world data. His research findings have been published in academic journals like Journal of Operations Management, Production and Operations Management or European Journal of Operational Research.  Besides research, Kai Hoberg is very enthusiastic about teaching supply chain management applying new teaching concepts.

Before returning to academia, Kai Hoberg worked as a strategy consultant and project manager for Booz & Company from 2006 to 2010. He conducted supply chain and operations management projects for numerous clients, in particular in consumer, chemicals and discrete manufacturing industries. Currently, he is active as faculty for executive supply chain education for global firms.


Tel: +49 40 328707-276
Fax: +49 40 328707-209



Contact as vCard

Selected Publications

Copy reference link   DOI: 10.1111/poms.12721

Abstract: To be efficient, logistics operations in e-commerce require warehousing and transportation resources to be aligned with sales. Customer orders must be fulfilled with short lead times to ensure high customer satisfaction, and the costly under-utilization of workers must be avoided. To approach this ideal, forecasting order quantities with high accuracy is essential. Many drivers of online sales, including seasonality, special promotions and public holidays, are well known, and they have been frequently incorporated into forecasting approaches. However, the impact of weather on e-commerce operations has not been rigorously analyzed. In this study, we integrate weather data into the sales forecasting of the largest European online fashion retailer. We find that sunshine, temperature, and rain have a significant impact on daily sales, particularly in the summer, on weekends, and on days with extreme weather. Using weather forecasts, we have significantly improved sales forecast accuracy. We find that including weather data in the sales forecast model can lead to fewer sales forecast errors, reducing them by, on average, 8.6% to 12.2% and up to 50.6% on summer weekends. In turn, the improvement in sales forecast accuracy has a measurable impact on logistics and warehousing operations. We quantify the value of incorporating weather forecasts in the planning process for the order fulfillment center workforce and show how their incorporation can be leveraged to reduce costs and increase performance. With a perfect information planning scenario, excess costs can be reduced by 11.6% compared with the cost reduction attainable with a baseline model that ignores weather information in workforce planning.

Export record: Citavi Endnote RIS ISI BibTeX WordXML

Copy reference link   DOI: 10.1016/j.ejor.2017.05.010

Abstract: Firms are increasingly interested in transport policies that enable a shift in cargo volumes from road (truck) transport to less expensive, more sustainable, but slower and less flexible transport modes like railway or inland waterway transport. The lack of flexibility in terms of shipment quantity and delivery frequency may cause unnecessary inventories and lost sales, which may outweigh the savings in transportation costs. To guide the strategic volume allocation, we examine a modal split transport (MST) policy of two modes that integrates inventory controls.We develop a single-product–single-corridor stochastic MST model with two transport modes considering a hybrid push–pull inventory control policy. The objective is to minimize the long-run expected total costs of transport, inventory holding, and backlogging. The MST model is a generalization of the classical tailored base-surge (TBS) policy known from the dual sourcing literature with non-identical delivery frequencies of the two transport modes. We analytically solve approximate problems and provide closed-form solutions of the modal split. The solution provides an easy-to-implement solution tool for practitioners. The results provide structural insights regarding the tradeoff between transport cost savings and holding cost spending and reveal a high utilization of the slow mode. A numerical performance study shows that our approximation is reasonably accurate, with an error of less than 3% compared to the optimal results. The results also indicate that as much as 85% of the expected volume should be split into the slow mode.

Export record: Citavi Endnote RIS ISI BibTeX WordXML

Copy reference link   DOI: 10.1080/0740817X.2014.999897

Abstract: The effect of inventory policies on order variability has been analyzed extensively. Two popular means of reducing order variability are demand smoothing and order smoothing. If the objective is minimizing demand variability, demands and orders can be heavily smoothed, resulting in an inventory policy that orders equal amounts in each time period. Such a policy obviously minimizes order variability, but it leads to high cost and low responsiveness of the inventory system. To optimize the overall performance of an inventory system, the effect of the inventory policy on all relevant dimensions of operational performance must be analyzed. We address this issue and analyze the effect of the parameter values of an inventory policy on three main dimensions of operational performance: Order variability, expected cost, and responsiveness. The inventory policy we use is the partial correction policy, a policy that can be used to smooth demand and to smooth orders. To analyze this policy, we use linear control theory. We derive the transfer function of the policy and prove the stability of the inventory system under this policy. Then, we determine the effect of the policy parameters on order variability, cost, and responsiveness and discuss how good parameter values can be chosen.

Export record: Citavi Endnote RIS ISI BibTeX WordXML

Copy reference link   DOI: 10.1016/j.jom.2013.05.002

Abstract: This paper investigates the relationship between the inventory dynamics and long-term stock returns of a large panel of U.S. manufacturing firms over the time period from 1991 to 2010. We propose two measures of inventory dynamics: one metric to assess the fluctuations of quarterly inventories within the year and a second metric to quantify relative year-over-year inventory growth. Our results indicate that within-year inventory volatility (IV) and abnormal year-over-year inventory growth (ABI) are associated with abnormal stock returns. Both metrics cannot be entirely explained by common risk factors. We find that firms with high IV and low ABI have the best long-term stock returns, and that stock performance decreases monotonically with higher ABI values. Our results are robust to various control variables including size, book-to-market value, industry and prior performance. We therefore conclude that changes in inventory levels provide valuable insights into the risks and opportunities faced by a company.

Export record: Citavi Endnote RIS ISI BibTeX WordXML

Academic Positions

since 2017Professor of Supply Chain and Operations Strategy at Kühne Logistics University, Hamburg, Germany

Associate Professor of Supply Chain and Operations Strategy at Kühne Logistics University, Hamburg, Germany


Visiting scholar at the NUS Business School, National University of Singapore, Singapore (Host: Professor Chung Piaw Teo)

2010 - 2012

Assistant Professor for Supply Chain Management at University of Cologne, Germany

2006 - 2010

Project manager and strategy consultant at Booz & Company (formerly Booz Allen Hamilton) in the European Operations team with functional focus on supply chain and operations management

2005 - 2006

Research and teaching assistant at the Seminar for Supply Chain Management and Management Science, University of Cologne (Professor Ulrich W. Thonemann)


Visiting scholar at the School of Industrial Engineering and Management, Israel Institute of Technology, Haifa, Israel (Host: Professor Yale T. Herer)


Visiting scholar at the S. C. Johnson Graduate School of Management, Cornell University, Ithaca, New York (Host: Professor James R. Bradley)

2001 - 2005

Research and teaching assistant at the Institute of Supply Chain Management, Westfälische Wilhelms-Universität Münster (Professor Ulrich W. Thonemann)

2000 - 2001

Students research assistant at the Institute for Production Management, Paderborn University (Professor Otto Rosenberg)



Dr. rer. pol. at Westfälische Wilhelms-Universität Münster „Analyzing the Fundamental Performance of Supply Chains: A Linear Control Theoretic Approach”, Co-Chairs: Professor Ulrich Thonemann and Professor Jörg Becker


Dipl.-Wirt. Ing. in Industrial Engineering at Paderborn University with majors in operations research, production management and electrical engineering, Diplom thesis “Practical Model Formulations and Solutions in Detailed Facility Layout Planning“”

Project Experience (Selection)

  • Supply chain strategy definition for consumer goods division in the chemical industry
  • Supply chain strategy definition for aircraft component manufacturer
  • Operations strategy definition for recycling machine manufacturer
  • Working capital reduction for global steel manufacturer
  • Operations segmentation for pharmaceutical custom manufacturer
  • Setup of European logistics footprint for consumer goods manufacturer
  • Organizational re-alignment of supply-side departments for consumer goods manufacturer
  • Operations model for sourcing joint venture of two global consumer goods companies
  • Optimization of promotion-related supply chain processes for department store
  • Development of a supply chain analysis tool for a global technology enterprise

What we have to learn to do, we learn by doing – as Aristotle pointed out almost 2,400 years ago, learning is about gaining experience. To manage future supply chains, students need to acquire knowledge in numerous fields from mathematical modeling to negotiation skills. However, students need to learn fast in order to keep pace with the constantly accelerating complexity of our supply chains. Different learning styles are available to teach students those supply chain concepts that can make the difference between failure and success. A teaching  method that has proven very effective is experiential learning: students learn directly from their own experience.

A classic experiential learning in supply chain management has been around for many years: MIT’s beer game. In a fascinating simple and concise way, generations of students have played the beer game to understand the supply chain dynamics that trigger the bullwhip effect. Departing from the classic beer game many extensions in experiential learning for supply chain management have been made. However, the simplicity and frugality of the beer game has often been lost when students were required to read through thick manuals and spend days to prepare and conduct games.

At Kühne Logistics University and University of Cologne, Prof. Dr. Kai Hoberg has worked on developing experiential learning games for teaching supply chain management. He focuses on simplicity while carving out the core learning objective. Certain games are played by the entire class whereas other games are performed by a group of students that is observed and evaluated by the class. In other settings, students conduct role plays to highlight problems that are further analyzed. The range of topics spans from very strategic issues around supply chain design or supply chain finance to very operational issues in warehousing. Here is a selection of games that provides an overview on different experiential learning approaches:

  • Postponement: Students manage a fashion supply chain and learn how postponement and design-for-supply-chain can be beneficial in settings with long lead times and high demand uncertainty.
  • Warehouse Picking: Students observe warehouse operations of few students who are picking parts for distribution. Different picking schemas are compared, performance is observed and aligned picking schemas are developed.
  • Service Level Alignment: Students observe discussions between sales managers and supply chain planners and analyze data to realize that the service level definition that is applied in the firm does not reflect customer requirements.


We are happy to provide you with more information as required. Please feel free to contact Kai Hoberg for materials or discussions on experiential supply chain management learning.